





## Key Findings of the Report on

# 'Role of Pumped Hydro Energy Storage (PHES) in India's Renewable Transition'

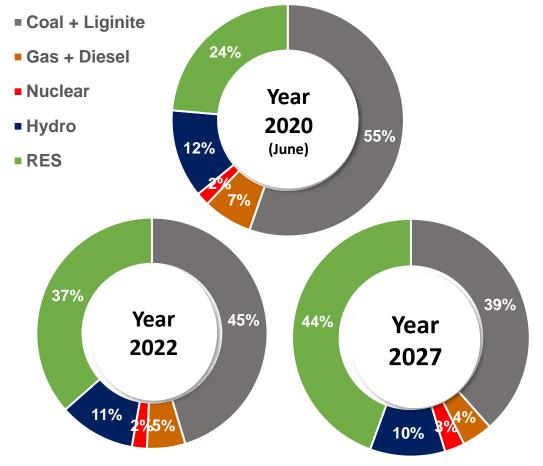
**Presented by** 

V. K. Agrawal (Technical Director) & Rajiv Ratna Panda (Technical-Head)

Integrated Research and Action for Development (IRADe)

Webinar on Role of Pumped Hydro Energy Storage in India's Renewable Transition 4 August, 11:30 am (IST), New Delhi, India








## Share of Renewables in Installed capacity in India

#### **Current All India Gen. Capacity** Total : 371 GW Coal : 198 GW Lignite : 6.61 GW Thermal Gas : 24.99 GW 222 GW (62 %) **Diesel : 0.50 GW** Nuclear : 6.78 GW (2 %) Current Status RE: 87.7 GW Hydro : 45.7 GW (12%) Wind : 37.8 GW : 87.7 GW ( 24%) RES Solar : 35.1 GW As on June,2020 **Biomass : 9.9 GW** Smaller Hydro : 4.7 GW Waste to Power : 0.1 GW

### India Power installed capacity mix



With enhanced capacity of renewables, grid balancing is going to be a challenge







## **Main Interventions for the Study**

• Deployment of large RE and Challenges towards grid Balancing  Comparative Study of different Storage Technologies  Role and Utility of
Pumped Hydro
Energy Storage (PHES) as a
Significant
Option

Roadmap for
Tapping Regional
Hydro Potential
in South Asia &
Recommendations







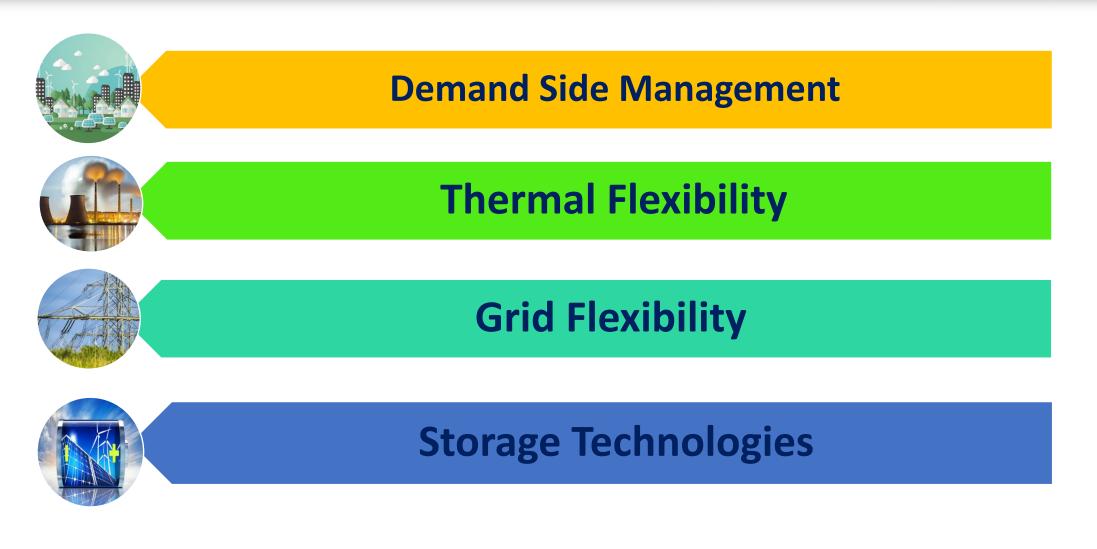
### **Dialogues during 1<sup>st</sup> Roundtable on 27<sup>th</sup> March 2019 and Key Discussion Points**





| Key Organizations Participated :                           |        |          |  |  |  |  |  |
|------------------------------------------------------------|--------|----------|--|--|--|--|--|
| Thought Leaders from Energy Sector, Think-<br>Tanks & NGOs |        |          |  |  |  |  |  |
| • IRADe                                                    | • NPTI | • CBIP   |  |  |  |  |  |
| Brookings                                                  | • REWS | • ICRIER |  |  |  |  |  |
| • CEEW                                                     | • ORF  | • CII    |  |  |  |  |  |
| • DFAT                                                     | • TAF  | • TERI   |  |  |  |  |  |

#### **Key Discussion Points During 1st Roundtable :**


- Likely Deployment of RE in the Grid ;
- Possible Avenues towards Balancing ;
- Comparative of different Storage Technologies;
- Global Energy Storage Experiences;







## Four main avenues which help towards balancing









# **Demand Side Management**

- Advancement in Distribution
  - **Infrastructure & Policy**
  - ✓ Time of the Day Metering;
  - ✓ Segregation of feeders;
  - ✓ Matching Tariff Design;
  - ✓ Adequate incentives;



# Needs special attention and policy/regulatory push;







# **Thermal Flexibility**

### **Enablers :**

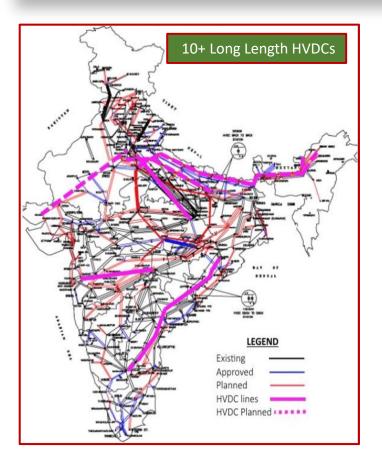
- Large Pool of Thermal Generation (230 GW);
- Latest CERC Norms backing down up to 55%;
- No Additional Capex towards Capacity Addition;

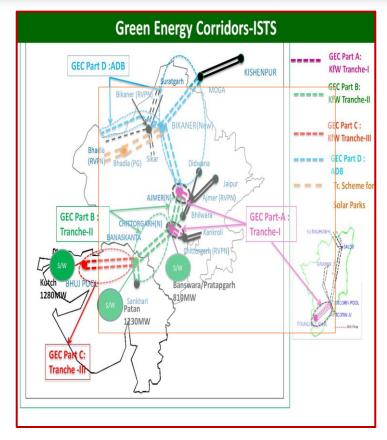
## **Limitations :**

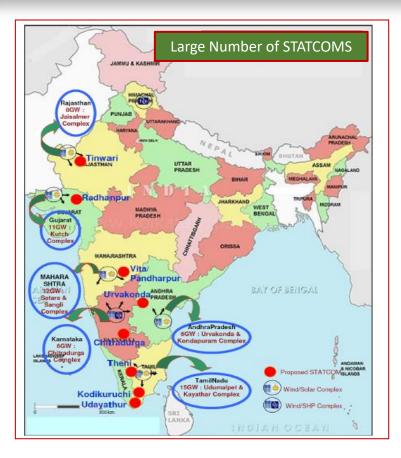
- Inferior heat rate at low PLF;
- Excessive wear & tear;
- Additional cost towards Retrofits;
- Limited Ramping up/down capability;

## Thermal flexibility is an important option, however has its own limitations





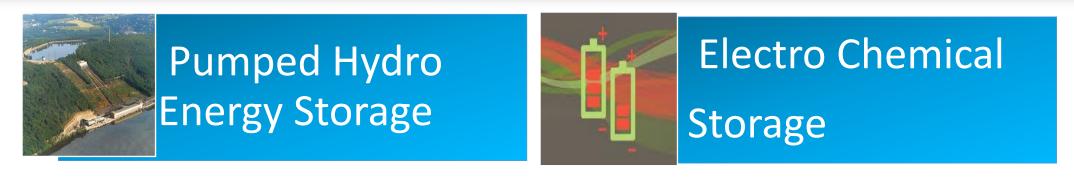



# **Grid Flexibility**

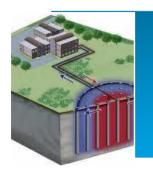




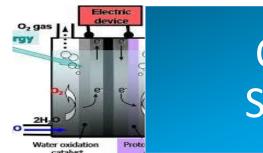



### **One Large Synchronously Connected Grid** with 425,000 Ckt.+ EHV Network

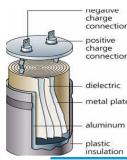








# **Grid Balancing Sources/Energy Storages**








# Thermal Storage















### **Dialogues during 2<sup>nd</sup> Roundtable on 16<sup>th</sup> April 2019 and Key Discussion Points**





#### **Key Organizations Participated :**

Policy Makers, Regulating Agencies and Stakeholders from Govt. & other Agencies

| • MoP   | • CEA   | POSOCO    |
|---------|---------|-----------|
| • DERC  | • NHPC  | • WBPDCL  |
| • SJVNL | • GUVNL | • GREENKO |

#### **Key Discussion Points During 2<sup>nd</sup> Roundtable :**

- Current scenario of PHES plants in India;
- Avenues for going for off-river closed loop PHES;
- Different Business model options for PHES;







### **Comparative of Energy Storage Technologies: Duration, Maturity and Applications**

| Storage                                                                                     | Duration (hrs) | Maturity            | Application                                                          |  |  |
|---------------------------------------------------------------------------------------------|----------------|---------------------|----------------------------------------------------------------------|--|--|
| Mechanical Energy Storage System                                                            |                |                     |                                                                      |  |  |
| Pumped hydroelectric                                                                        | 6 –1 0         | Commercial & Mature | Load levelling; Peak shaving; Renewable integration                  |  |  |
| Compressed air energy storage (underground)                                                 | 20             | Commercial          | Load levelling ; Renewable integration                               |  |  |
| Flywheels                                                                                   | 0.25           | Commercial          | Frequency regulation                                                 |  |  |
| Electrical and Magnetic Storage System                                                      |                |                     |                                                                      |  |  |
| Superconductive magnetic energy storage                                                     |                | Demo                | Power quality; Frequency regulation; Voltage Support                 |  |  |
| Electrochemical capacitors                                                                  | ~ 1 min        | Demo                | Power quality; Frequency regulation; Voltage Support                 |  |  |
| Electrochemical Storage System                                                              |                |                     |                                                                      |  |  |
| Advanced lead acid batteries                                                                | 4              | Demo                | Power quality; Frequency regulation; Voltage Support; RE integration |  |  |
| Lithium ion batteries                                                                       | 0.25–1         | Commercial          | Power quality improvement; Frequency regulation                      |  |  |
| Sodium sulfur                                                                               | 7.2            | Commercial          | Time Shifting; Frequency regulation; Renewable source integration    |  |  |
| Vanadium fow redox                                                                          | 5              | Demo                | Peak shaving Time shifting Frequency regulation RE integration       |  |  |
| Source: https://www.adb.org/sites/default/files/publication/225731/energy-storage-grids.pdf |                |                     |                                                                      |  |  |

Battery Storage & PHES technologies are complimentary in nature and depends on the application & time period;







**Global Operational Energy Storage Power Capacity by Technology Group – May 2017** 

|                             | <b>Total Capacity (GW)</b> | Total Capacity (%) |
|-----------------------------|----------------------------|--------------------|
| Туре                        |                            |                    |
| Pumped Hydro Energy Storage | 169 GW                     | 96 %               |
| Thermal Storage             | 3.3 GW                     | 1.9%               |
| Electro-Chemical Storage    | 1.9 GW                     | 1.1%               |
| Electro-Mechanical Storage  | 1.6 GW                     | 0.9%               |
| Total                       | 176 GW                     |                    |

Source : IRENA Document Oct. - 2017

Across the Globe the main source of Energy Storage is Pumped Hydro Energy Storage (PHES)



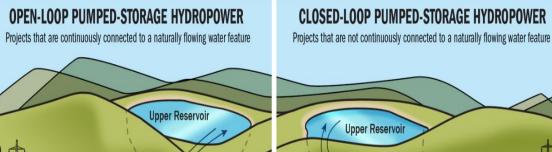


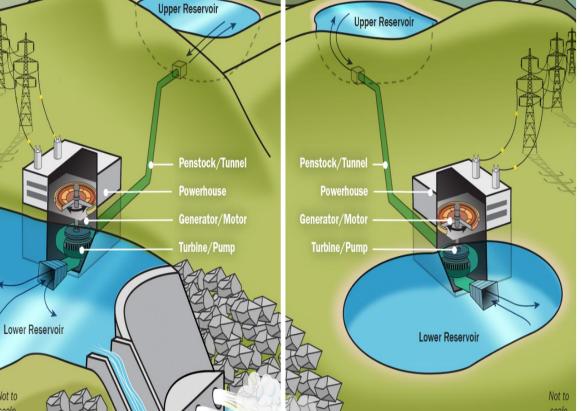


### **Technological Advancement \_Off River Closed Loop Pumped Hydro Energy Storage (PHES)**

#### The PHES facilities can be of two types

#### (i) Hybrid (open loop) PHES


**B**oth pumped and natural flow water is used to generate electricity.


(ii) Off- river closed loop PHES, Same water is used for pumping and generation, with make-up water for evaporation through water stream, rain and/or any other source;

#### **Off-river Closed Loop PHES Advantages :**



✓ Cheaper option for balancing & **RE** integration





/www.energy.gov/eere/water/articles/new-approach-pumped-storage-hydropowe







## **South Asia Regional Perspective**







### **Regional Conference on 12<sup>th</sup> June 2019 : Key Findings and Recommendations**

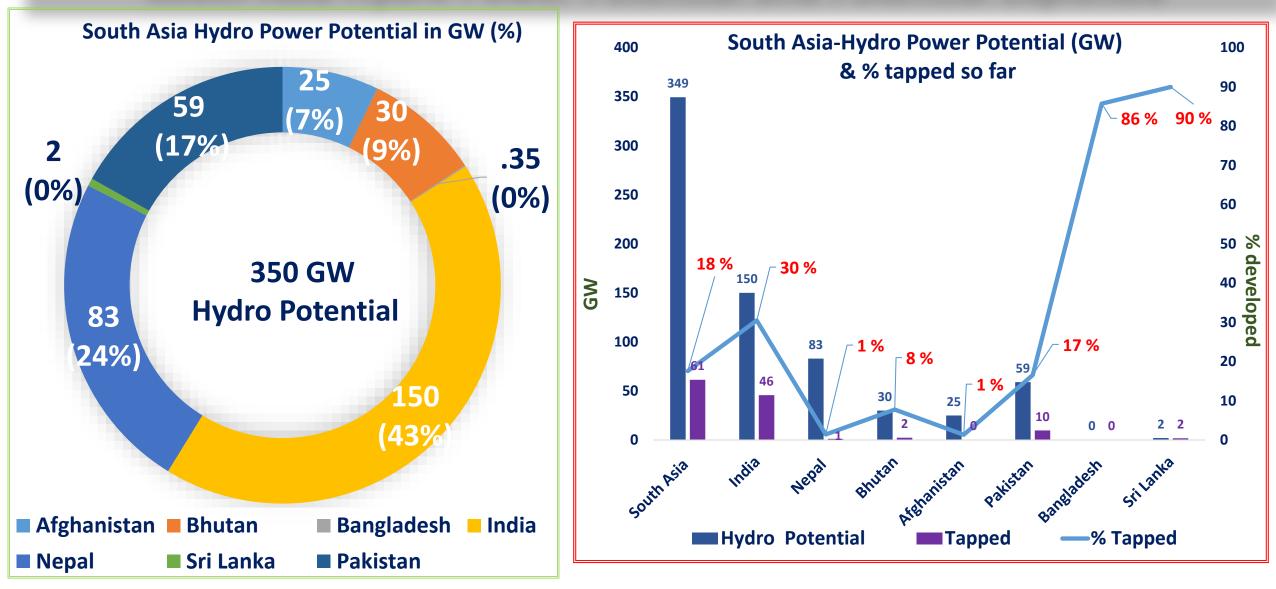






Representatives from BBIN

Bhutan Bangladesh India and Nepal










## **South Asia Hydro Power Potential and Potential Exploited**







#### Australian Aid

SA Regional Perspective-Benefits of Regional Grid Balancing & RE Grid Integration





Hydro Power through CBET and optimised grid balancing



A tool for flexibility, managing RE Intermittency, in SA.



Opportunity-Developing Regional Power Market-Trading of balancing services, Ancillary Market



Successful 9 PM, 9 Minute-A generation flexibility of ~ 400 MW was achieved from hydropower plants in Bhutan<sup>5</sup>

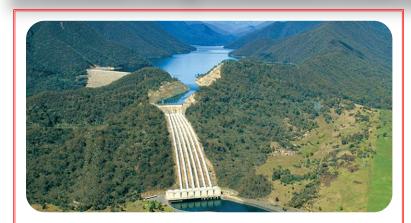


One Sun One World One Grid' (OSOWOG)-A grand Vision



New power market initiatives in India also offers an opportunity to leapfrog

In 2016, 80% of Denmark's wind generation<sup>6</sup> was balanced through CBET through the utilization of Norway's hydro resources

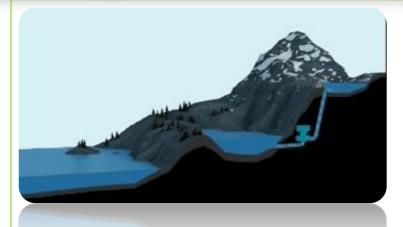

ttp://cea.nic.in/reoprts/others/planning/irp/Optimal\_generation\_mix\_report.odf\_ahttps://powerdivision.portal.gov.bd/sites/default/files/files/powerdivision.portal.gov.bd/sites/default/files/files/powerdivision.portal.gov.bd/page/4f81bf4d\_1180\_4c53\_bc27c\_8fa0ebate2c1/Revisiting%20PS/NP2016%209X30Notices/2019/09-September/IGCEP%20Plan%20[2018-40].pdf <sup>3</sup> ps://nopra.org.pk/Admission%20Notices/2019/09-September/IGCEP%20Plan%20[2018-40].pdf <sup>4</sup> For Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://www.pucsl.gov.bd/sites/default/files/files/files/for Sri Lanka 50% renewable energy (including major hydro) by year 2030, https://gov.bd/sites/default/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/fi

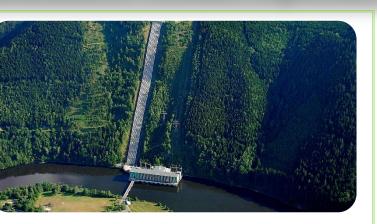






### Achieving commercial viability in case of PHES\_ Business Model Options





#### (Option 1)-

Asset based on Existing Conventional Approach

Challenges

- Being a negative energy source, tariffs work out to be quite high;
- Do not stand competitive in the face of declining tariffs;
- Lack of private sector participation and competition;





#### (Option 2)

As a Regulatory Asset (towards grid supporting measures)

- Brought on the lines of Grid/Transmission Elements ;
- To be operated at the requirement of Grid Operator ;
- Tariffs to be decided by regulator and charged as pooled assets;

#### (Option 3)

As Market Based Asset under Ancillary Services

- Designed to provide balancing power for certain minimum hours on each day;
- Full capacity charges if available for agreed duration with incentives for extra;
- The tariff for output (balancing) power to be decided based on comp. bidding;





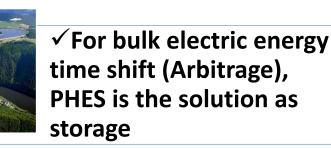


## **Key Findings and Way Forward**



✓ Accelerating DSM to support grid balancing




✓ Valuing cost of balancing power



✓ Different storage tech.
to be deployed based on usage & economics



 ✓ Batteries will play an important role, but mainly for short periods

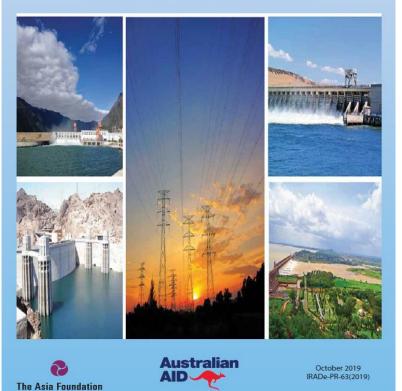




✓ Off-river closed loop
PHES Potential & a 'Long
Term Outlook' needed



✓ Exploring Innovative business & financing models for PHES










Role of Pumped Hydro Energy Storage in India's Renewable Transition



## **Thank You**